Business Verified eBay Store Seal Watch Video Watch Video

A flawed model: no tripartate synapse in the adult brain

Posted on January 15, 2013 by James Kohl.

Model for brain signaling flawed, new study finds

Excerpt:  “The tripartite synapse – a model long accepted by the scientific community and one in which multiple cells collaborate to move signals in the central nervous system – does not exist in the adult brain.”

Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain [subscription required]

Excerpt: “The observations reported here do not call into question that astrocytes can be indirectly activated by neural activity. A number of transmitters, including endocannabinoids, purines, norepinephrine, and acetylcholine, as well as changes in extracellular Ca2+, can trigger astrocytic Ca2+ signaling (14, 18–21). Yet, activation of these pathways is typically limited to episodes of intense glutamatergic transmission or to the global release of neuromodulators that occur in the setting of arousal or awakening.”

My comment to the Science site (received on Thu, 10 Jan 2013 19:54): Epigenetic effects on the unicellular young and the multicellular adult brain.

Shall we eliminate the indirect effects of sensory input that never really altered intracellular signaling and stochastic gene expression in neurons?  Can we then focus on the direct effects of nutrient chemicals and pheromones  on gene expression? If so, will we see that learning and memory in  unicellular yeasts is exemplified via epigenetically-effected changes in
gonadotropin releasing hormone (GnRH) secretion in young mammals?

Apparently, the research reported here links gene duplication and increased hexose transport / glucose utilization to genetically predisposed in utero development of the vertebrate GnRH neuronal system. This links glucose uptake to postnatal competition among conspecifics for nutrients that enable their metabolism of nutrients to pheromones, which signal species-specific reproductive fitness during the developmental staging / life history of species from microbes to man.

In yeasts, the epigenetic effects of glucose on the level of expression of the hexose transporter and receptor-mediated rate of glucose transport into the cell alters nutrient chemical-dependent pheromone-controlled reproduction at the advent of sexual reproduction. Presumably this occurs via the same nutrient chemical stress-altered and social stress-altered molecular mechanisms that epistatically effect the microRNA / messenger RNA balance in
hormone-secreting nerve cells of the mammalian brain, which control neurotransmission.

In my model, this nutrient chemical stress-altered and social stress-altered microRNA / messenger RNA balance facilitates hypothalamic GnRH pulse frequency and amplitude and 1) epigenetically effected,  2) nutrient chemical-dependent, 3) pheromone-controlled
reproduction via the hypothalamic-pituitary-gonadal (HPG) axis and HP-adrenal
(HPA) axis.

Perhaps the failed promise of drug effects on astrocytes was due to the more powerful direct (i.e., epigenetic) effects of nutrient chemicals and pheromones on neurotransmission (e.g., as required for adaptive evolution and prenatal to postnatal developmental staging in mammals).

—————————————

Addendum: For two decades, people have designed studies based on the wrong model of adult neurotransmission. The result is a failure to recognize the right model. The right model is the one where nutrient chemicals and pheromones change neurotransmission and cause adaptive evolution in species from microbes to man.

In mammals, we can see the epigenetic effects of food odors and pheromones manifested in neuroendocrine changes during the development of behavior. Hormone-organized behaviors lead to hormone-activated behaviors in vertebrate and invertebrate species. This means the same model for pheromone-controlled neurotransmission and insect behavior extends well to pheromone-controlled neurotransmission and mammalian behavior.

There is no need to separate the model for food odors that control behavior from the model for pheromonal control of behavior via ecological, social, neurogenic, and socio-cognitive niche construction.  Food odors and pheromones organize and activate behavior via niche construction.  Indirect activation of neural activity in astrocytes can now be viewed in the light of direct activation of neural activity by olfactory/pheromonal input, which links ecological epigenetics to niche contruction and downstream effects on the behavior of all organisms (i.e., from microbes to man). Behavior is nutrient chemical-dependent and pheromone-controlled with or without the involvement of neurotransmitters, but behavior is better controlled when niche construction leads to species-specific neurogenic and socio-cognitive niches.

Comments

comments

James Kohl
Retired medical laboratory scientist

James Kohl




Order by Mail or FAX

Order by Mail or Fax

If you prefer to place your pheromones order by MAIL or FAX, using our printable order form, click here.

Trademarks & Notices: LuvEssentials is not affiliated in any way with WebMD, CNN, Discovery Health. All trademarks and registered trademarks appearing on LuvEssentials are the property of their respective owners.

Orders that were shipped by free USPS Mail and are returned to us will be assessed a return processing fee of $7.00 US Dollars. Orders totaling over $190.00 US Dollars, before any discount, that are returned to us will be assessed a return processing fee of 25%.

Please note, the testimonials we display are all real; however, any photos accompanying these testimonials are stock photography, not actual customers. We do this to protect the privacy of our customers.

Also, in accordance with FTC guidelines, we want to make it explicitly clear that the testimonials we display throughout this website are based on the unique experiences that some of our customers have shared with us. We cannot promise that you will experience similar benefits from using our product. If you are not satisfied with our product for any reason, simply return the product within 60 days for a full refund excluding the costs of shipping and handling. Please contact us with any questions you may have.

James Kohl owns Pheromones.com, and he has published books and award-winning research journal articles about human pheromones. With colleagues he was the first to show that a mixture of human pheromones increases the flirtatious behaviors of women, and increases their level of attraction to the man wearing the mixture - during a real-life social circumstance lasting 15 minutes.

James Kohl was not paid for his endorsement. Nevertheless, he is an affiliate of LuvEssentials.com which means it is possible for him to receive a monetary gain from the sale of LuvEssentials products based on how the visitor arrived at our site.

For testimonials of LuvEssentials products, please visit our testimonials page here or our ebay reviews page here.

To contact us, please click here

Contact Us

Please complete the following form to contact us; we will reply within one business day.
Business days are Monday through Friday, 9:00 AM to 5:00 PM, EST
The information you are providing here will not be sold or disclosed to any outside party.
(* indicates required fields)

Please contact us by:

Phone:
800.611.3578

Email:
support@luvessentials.com

Mail:
Lodix Corporation
138 Palm Coast Parkway N.E.
Suite 192
Palm Coast, FL 32137


What is the vomeronasal organ (VNO)?

The vomeronasal organ (VNO) is a cone-shaped organ in the nasal cavity, which is believed to be one of the body's receptors of pheromones. More, specifically, the VNO, which is part of the accessory olfactory system in the nose, does not respond to normal scents, but may detect odorless, barely perceptible pheromones.

Other schools of thought believe that it is not the VNO but rather cells in our main olfactory system and their affects on hormones secreted by the hypothalamus that are responsible for the affects of pheromones.

Learn more about the science behind pheromones here.

What are optimized pheromones?

Optimized pheromones are lab-certified pheromone formulations that have the optimum concentration of biologically active pheromones scientifically proven to produce behavior-altering results -- particularly as sexual attractants. Optimized pheromone formulations do not necessarily contain the maximum level of pheromones available on the market, but rather contain the greatest degree (and combination)of human pheromones that trigger a conditioned biological response in humans that, in turn, dictate their sexual behavior. Optimized pheromones also release neurotransmitters that directly modify the behavior of the opposite sex, such as triggering sexual excitement. For example:

Optimized pheromones for men are scientifically proven to bring about an increase in the luteinizing hormone (LH) in women, thereby causing a woman to have a heightened sexual responsiveness to a man. This LH surge elevates a woman's predisposition towards sexual activity.

Optimized pheromones for women are scientifically proven to bring about a biochemical surge in men, thereby causing a man to have a heightened sexual responsiveness to a woman. This biochemical surge is what makes a man fiercely determined to copulate.