Business Verified eBay Store Seal Watch Video Watch Video

Food odors, pheromones and potent social learning in primates

Posted on April 29, 2013 by James Kohl.

Social learning depends on pheromones.

Science 26 April 2013:
Vol. 340 no. 6131 pp. 483-485

Potent Social Learning and Conformity Shape a Wild Primate’s Foraging Decisions [subscription required]

Abstract Excerpt: “…powerful effects of social learning represent a more potent force than hitherto recognized in shaping group differences among wild animals.”

My comment to Science:

Social influences on nutrient acquisition involve the same molecular mechanisms of reciprocity all across species. For example, among different bacterial species existing in similar environments, DNA uptake appears to have epigenetically ‘fed’ interspecies methylation and speciation via conjugation. This indicates that reproduction began with an active nutrient
uptake mechanism in heterospecifics and that the mechanism evolved to become symbiogenesis in the conspecifics of asexual organisms. In yeasts, epigenetic changes driven by nutrition might then have led to the creation of novel cell types, which are required at evolutionary advent of sexual reproduction.

These epigenetic changes probably occur across the evolutionary continuum that includes both nutrition-dependent reproduction in unicellular organisms and sexual reproduction in mammals. For example, ingested plant microRNAs influence gene expression across kingdoms. In mammals, this epigenetically links what mammals eat to changes in gene expression and to new genes required for the evolutionary development of the mammalian placenta and the
human brain.

van de Waal, Borgeaud and Whiten provide a primate study that fast-forwards what is known about the evolution of mammals from microbes and invertebrates. Their work exemplifies nutrient-dependent pheromone-controlled adaptive evolution, which occurs via ecological, social, neurogenic, and socio-cognitive niche construction.

Note, however, that the primate socio-cognitive niche arises as does the nutrient-dependent pheromone-controlled socio-cognitive niche of the honeybee model organism. What the queen eats determines her pheromone production, which epigenetically effects every interaction in the colony.”


I hope this comment to Science will make it more difficult for any intellectual property thief to claim their understanding of the role of microRNAs does not follow from my details of the role of the microRNA / messenger RNA balance in nutrient-dependent pheromone-controlled adaptive evolution. Other researchers may already understand nutrient-dependent pheromone-controlled adaptive evolution in the context of the microRNA / messenger RNA balance. However, as discussion-group participants know, there are always those who are extremely critical of new concepts, attack those who provide new information, and denigrate their published works.

For example, Clarence ‘Sonny’ Williams has personally attacked me and denigrated my published works and my professionalism during the past few years. He is now touting the role of microRNA — as detailed in my model of adaptive evolution of the human brain and behavior — after adamantly touting random mutations theory and other nonsense (e.g., domain specific mental modules; unknown natural mechanisms; lack of transgenerational epigenetic inheritance). Yet his recent post on the importance of microRNA made no mention of the fact that I have detailed its importance. This was done in the model for nutient-dependent pheromone-controlled adaptive evolution that I have extended from microbes to man via their common molecular biology.

I began detailing this with co-authors in our 1996 Hormones and Behavior review article From fertilization to adult sexual behavior. In our section on molecular epigenetics we wrote:

“Yet another kind of epigenetic imprinting occurs in species as diverse as yeast, Drosophila, mice, and humans and is based upon small DNA-binding proteins called “chromo domain” proteins, e.g., polycomb. These proteins affect chromatin structure, often in telomeric regions, and thereby affect transcription and silencing of various genes (Saunders, Chue, Goebl, Craig, Clark, Powers, Eissenberg, Elgin, Rothfield, and Earnshaw, 1993; Singh, Miller, Pearce, Kothary, Burton, Paro, James, and Gaunt, 1991; Trofatter, Long, Murrell, Stotler, Gusella, and Buckler, 1995). Small intranuclear proteins also participate in generating alternative splicing techniques of pre-mRNA and, by this mechanism, contribute to sexual differentiation in at least two species, Drosophila melanogaster and Caenorhabditis elegans (Adler and Hajduk, 1994; de Bono, Zarkower, and Hodgkin, 1995; Ge, Zuo, and Manley, 1991; Green, 1991; Parkhurst and Meneely, 1994; Wilkins, 1995; Wolfner, 1988). That similar proteins perform functions in humans suggests the possibility that some human sex differences may arise from alternative splicings of otherwise identical genes.”

The entirety of this quoted material can be credited to the prescient epigenetic expertise of co-author Teresa Binstock. Thus, the theft of intellectual property by Clarence ‘Sonny’ Williams exemplifies how virtually anyone unethical enough to stake a claim to the decades of collaborative works by others can quite simply assert themselves as an authority with no published works, and no knowledge of anything except random mutations theory. His behavior is unethical and, quite frankly, despicable.  However, it serves notice to people like me that unless prepublication formats and venues are used (see: Nutrient-dependent / Pheromone-controlled Adaptive EvolutionNutrient-dependent / Pheromone-controlled thermodynamics and thermoregulation, virtually anyone can come along and try to take credit for the work of others.  Meanwhile, let’s all hope that peer-review actually turns out to be helpful in the second round of review of my February 2013 submission.




James Kohl
Retired medical laboratory scientist

James Kohl

Order by Mail or FAX

Order by Mail or Fax

If you prefer to place your pheromones order by MAIL or FAX, using our printable order form, click here.

Trademarks & Notices: LuvEssentials is not affiliated in any way with WebMD, CNN, Discovery Health. All trademarks and registered trademarks appearing on LuvEssentials are the property of their respective owners.

Orders that were shipped by free USPS Mail and are returned to us will be assessed a return processing fee of $7.00 US Dollars. Orders totaling over $190.00 US Dollars, before any discount, that are returned to us will be assessed a return processing fee of 25%.

Please note, the testimonials we display are all real; however, any photos accompanying these testimonials are stock photography, not actual customers. We do this to protect the privacy of our customers.

Also, in accordance with FTC guidelines, we want to make it explicitly clear that the testimonials we display throughout this website are based on the unique experiences that some of our customers have shared with us. We cannot promise that you will experience similar benefits from using our product. If you are not satisfied with our product for any reason, simply return the product within 60 days for a full refund excluding the costs of shipping and handling. Please contact us with any questions you may have.

James Kohl owns, and he has published books and award-winning research journal articles about human pheromones. With colleagues he was the first to show that a mixture of human pheromones increases the flirtatious behaviors of women, and increases their level of attraction to the man wearing the mixture - during a real-life social circumstance lasting 15 minutes.

James Kohl was not paid for his endorsement. Nevertheless, he is an affiliate of which means it is possible for him to receive a monetary gain from the sale of LuvEssentials products based on how the visitor arrived at our site.

For testimonials of LuvEssentials products, please visit our testimonials page here or our ebay reviews page here.

To contact us, please click here

Contact Us

Please complete the following form to contact us; we will reply within one business day.
Business days are Monday through Friday, 9:00 AM to 5:00 PM, EST
The information you are providing here will not be sold or disclosed to any outside party.
(* indicates required fields)

Please contact us by:



Lodix Corporation
138 Palm Coast Parkway N.E.
Suite 192
Palm Coast, FL 32137

What is the vomeronasal organ (VNO)?

The vomeronasal organ (VNO) is a cone-shaped organ in the nasal cavity, which is believed to be one of the body's receptors of pheromones. More, specifically, the VNO, which is part of the accessory olfactory system in the nose, does not respond to normal scents, but may detect odorless, barely perceptible pheromones.

Other schools of thought believe that it is not the VNO but rather cells in our main olfactory system and their affects on hormones secreted by the hypothalamus that are responsible for the affects of pheromones.

Learn more about the science behind pheromones here.

What are optimized pheromones?

Optimized pheromones are lab-certified pheromone formulations that have the optimum concentration of biologically active pheromones scientifically proven to produce behavior-altering results -- particularly as sexual attractants. Optimized pheromone formulations do not necessarily contain the maximum level of pheromones available on the market, but rather contain the greatest degree (and combination)of human pheromones that trigger a conditioned biological response in humans that, in turn, dictate their sexual behavior. Optimized pheromones also release neurotransmitters that directly modify the behavior of the opposite sex, such as triggering sexual excitement. For example:

Optimized pheromones for men are scientifically proven to bring about an increase in the luteinizing hormone (LH) in women, thereby causing a woman to have a heightened sexual responsiveness to a man. This LH surge elevates a woman's predisposition towards sexual activity.

Optimized pheromones for women are scientifically proven to bring about a biochemical surge in men, thereby causing a man to have a heightened sexual responsiveness to a woman. This biochemical surge is what makes a man fiercely determined to copulate.