Business Verified eBay Store Seal Watch Video Watch Video

Pheromones, epigenetic imprinting and brain morphology

Posted on May 8, 2013 by James Kohl.

In 1996 our review article detailed epigenetic effects of pheromones in the context of genomic imprinting effects. Here’s the latest news.

Genomic Imprinting Effects of the X Chromosome on Brain Morphology
J. Neurosci. 2013;33 8567-8574J ean-Francois Lepage, David S. Hong, Paul K. Mazaika, Mira Raman, Kristen Sheau, et al.

X-Chromosome Imprinting Affects Brain Morphology

Epigenetic modification of specific genes in eggs or sperm (genomic imprinting) prevents expression of maternal or paternal alleles in offspring. Imprinting of X-chromosome genes has sex-specific effects, because only females are affected by imprinting on paternally inherited X chromosomes (Xp) and imprinting on maternally inherited X chromosomes (Xm) only affects half of female cells, because one X chromosome is inactivated in each cell. Whether imprinting of X-linked genes contributes to sexual dimorphism in brain anatomy and cognition is unclear. To address this question, Lepage et al. examined girls with Turner syndrome, in which either Xp or Xm and X inactivation are absent. Differences in cortical thickness, surface area, and volume were found in several regions. For example, cortical thickness in temporal areas was greater in Xp than in Xm girls, whereas gray matter volume in superior frontal regions was greater in Xm than in Xp girls. The results suggest that imprinting of X-chromosome genes can influence sexual dimorphism in the brain.

Article excerpt: The present findings have direct implications for our understanding of the epigenetic mechanisms involved in sexual dimorphism of the brain that are taking place early in development.

My comment: 16+ years post publication of our review, and some people are just now starting to catch on. Epigenetic imprinting is not limited to certain species, and epigenetic effects of nutrients and pheromones control species diversity. Clearly, not only can imprinting of X-chromosome genes in mammals influence sexual dimorphism in the brain, it will influence nutrient-dependent pheromone-controlled adaptive evolution of the brain and behavior as it influences genetically predisposed, epigenetically-effected human embodied cognition. How could it not?

Excerpted from our review: From Fertilization to Adult Sexual Behavior (1996)

“Yet another kind of epigenetic imprinting occurs in species as diverse as yeast, Drosophila, mice, and humans and is based upon small DNA-binding proteins called “chromo domain” proteins, e.g., polycomb. These proteins affect chromatin structure, often in telomeric regions, and thereby affect transcription and silencing of various genes (Saunders, Chue, Goebl, Craig, Clark, Powers, Eissenberg, Elgin, Rothfield, and Earnshaw, 1993; Singh, Miller, Pearce, Kothary, Burton, Paro, James, and Gaunt, 1991; Trofatter, Long, Murrell, Stotler, Gusella, and Buckler, 1995). Small intranuclear proteins also participate in generating alternative splicing techniques of pre-mRNA and, by this mechanism, contribute to sexual differentiation in at least two species, Drosophila melanogaster and Caenorhabditis elegans (Adler and Hajduk, 1994; de Bono, Zarkower, and Hodgkin, 1995; Ge, Zuo, and Manley, 1991; Green, 1991; Parkhurst and Meneely, 1994; Wilkins, 1995; Wolfner, 1988). That similar proteins perform functions in humans suggests the possibility that some human sex differences may arise from alternative splicings of otherwise identical genes.

A potential ramification of epigenetic imprinting and alternative splicing may be occurring in Xq28, a chromosomal region implicated in homosexual orientation (Brook, 1993; Hu, Pattatucci, Patterson, Li, Fulker, Cherny, Kruglyak, and Hamer, 1995; Turner, 1995). Xq28 contains one of the X chromosome’s two pseudoautosomal regions (PARs), adjoins the telomere, and has various means of gene expression control (D’Esposito, Ciccodicola, Gianfrancesco, Esposito, Flagiello, Mazzarella, Schiessinger, and D’Urso (1996). Xq28, therefore, is a chromosomal region that has many of the heterochromatic and telomeric characteristics that participate in sexual determination and behavior in other species.

Comments

comments

James Kohl
Retired medical laboratory scientist

James Kohl




Order by Mail or FAX

Order by Mail or Fax

If you prefer to place your pheromones order by MAIL or FAX, using our printable order form, click here.

Trademarks & Notices: LuvEssentials is not affiliated in any way with WebMD, CNN, Discovery Health. All trademarks and registered trademarks appearing on LuvEssentials are the property of their respective owners.

Orders that were shipped by free USPS Mail and are returned to us will be assessed a return processing fee of $7.00 US Dollars. Orders totaling over $190.00 US Dollars, before any discount, that are returned to us will be assessed a return processing fee of 25%.

Please note, the testimonials we display are all real; however, any photos accompanying these testimonials are stock photography, not actual customers. We do this to protect the privacy of our customers.

Also, in accordance with FTC guidelines, we want to make it explicitly clear that the testimonials we display throughout this website are based on the unique experiences that some of our customers have shared with us. We cannot promise that you will experience similar benefits from using our product. If you are not satisfied with our product for any reason, simply return the product within 60 days for a full refund excluding the costs of shipping and handling. Please contact us with any questions you may have.

James Kohl owns Pheromones.com, and he has published books and award-winning research journal articles about human pheromones. With colleagues he was the first to show that a mixture of human pheromones increases the flirtatious behaviors of women, and increases their level of attraction to the man wearing the mixture - during a real-life social circumstance lasting 15 minutes.

James Kohl was not paid for his endorsement. Nevertheless, he is an affiliate of LuvEssentials.com which means it is possible for him to receive a monetary gain from the sale of LuvEssentials products based on how the visitor arrived at our site.

For testimonials of LuvEssentials products, please visit our testimonials page here or our ebay reviews page here.

To contact us, please click here

Contact Us

Please complete the following form to contact us; we will reply within one business day.
Business days are Monday through Friday, 9:00 AM to 5:00 PM, EST
The information you are providing here will not be sold or disclosed to any outside party.
(* indicates required fields)

Please contact us by:

Phone:
800.611.3578

Email:
support@luvessentials.com

Mail:
Lodix Corporation
138 Palm Coast Parkway N.E.
Suite 192
Palm Coast, FL 32137


What is the vomeronasal organ (VNO)?

The vomeronasal organ (VNO) is a cone-shaped organ in the nasal cavity, which is believed to be one of the body's receptors of pheromones. More, specifically, the VNO, which is part of the accessory olfactory system in the nose, does not respond to normal scents, but may detect odorless, barely perceptible pheromones.

Other schools of thought believe that it is not the VNO but rather cells in our main olfactory system and their affects on hormones secreted by the hypothalamus that are responsible for the affects of pheromones.

Learn more about the science behind pheromones here.

What are optimized pheromones?

Optimized pheromones are lab-certified pheromone formulations that have the optimum concentration of biologically active pheromones scientifically proven to produce behavior-altering results -- particularly as sexual attractants. Optimized pheromone formulations do not necessarily contain the maximum level of pheromones available on the market, but rather contain the greatest degree (and combination)of human pheromones that trigger a conditioned biological response in humans that, in turn, dictate their sexual behavior. Optimized pheromones also release neurotransmitters that directly modify the behavior of the opposite sex, such as triggering sexual excitement. For example:

Optimized pheromones for men are scientifically proven to bring about an increase in the luteinizing hormone (LH) in women, thereby causing a woman to have a heightened sexual responsiveness to a man. This LH surge elevates a woman's predisposition towards sexual activity.

Optimized pheromones for women are scientifically proven to bring about a biochemical surge in men, thereby causing a man to have a heightened sexual responsiveness to a woman. This biochemical surge is what makes a man fiercely determined to copulate.