Business Verified eBay Store Seal Watch Video Watch Video

Species specificity in gene expression in the brain

Posted on August 7, 2012 by James Kohl.

By Edyta Zielinska | August 1, 2012

Excerpt: “Researchers took thin slices from regions of the brain involved in processing visual and sensory information and scanned them for the in situ expression of 1,000 genes that act as markers of cell type or are involved in disease, evolution, or cortical function.”

My comment (in the context of mammals):

Species specific differences in cell type are linked via olfaction and pheromones to differences in tissue type (e.g., cells in tissues). The development of the neuroendocrine and neuroimmune systems is dependent on the central role of gonadotropin releasing hormone (GnRH) nerve cells in brain tissue that regulates the secretion of most, if not all, other hormones that have been indirectly linked from non-olfactory/pheromonal input to brain development and behavior.

The epigenetic effect of nutrient chemicals and pheromones directly links food odors and social odors/pheromones via GnRH to the beneficial effects of homeostasis or detrimental effects of inflammation (as in processes that underlie the development of some cancers). Therefore, the question to be answered is not about the number of genes that act as markers of cell type or are involved in disease, evolution, or cortical function. Indeed, the more important question to first ask is what epigenetic effects of sensory input on receptor-mediated events are directly involved in the development of genetically predisposed diseases.

When researchers examine gene expression in slices from regions of the brain involved in processing sensory information in attempts to locate species specific markers of cell types involved in disease, evolution, or cortical function, shouldn’t they look first at gene expression that is altered by species-specific olfactory/pheromonal input? That might help determine both the differences and the similarities among disease processes common in species from mice to man.

Chemical ecology is, of course, responsible for adaptive evolution via ecological, social, neurogenic, and socio-cognitive niche construction (i.e., brain development). How could anything else but chemicals (nutrient chemicals and pheromones) be responsible for similarities and differences in cell types of the brain in different species?

Comments

comments

James Kohl
Retired medical laboratory scientist

James Kohl




Order by Mail or FAX

Order by Mail or Fax

If you prefer to place your pheromones order by MAIL or FAX, using our printable order form, click here.

Trademarks & Notices: LuvEssentials is not affiliated in any way with WebMD, CNN, Discovery Health. All trademarks and registered trademarks appearing on LuvEssentials are the property of their respective owners.

Orders that were shipped by free USPS Mail and are returned to us will be assessed a return processing fee of $7.00 US Dollars. Orders totaling over $190.00 US Dollars, before any discount, that are returned to us will be assessed a return processing fee of 25%.

Please note, the testimonials we display are all real; however, any photos accompanying these testimonials are stock photography, not actual customers. We do this to protect the privacy of our customers.

Also, in accordance with FTC guidelines, we want to make it explicitly clear that the testimonials we display throughout this website are based on the unique experiences that some of our customers have shared with us. We cannot promise that you will experience similar benefits from using our product. If you are not satisfied with our product for any reason, simply return the product within 60 days for a full refund excluding the costs of shipping and handling. Please contact us with any questions you may have.

James Kohl owns Pheromones.com, and he has published books and award-winning research journal articles about human pheromones. With colleagues he was the first to show that a mixture of human pheromones increases the flirtatious behaviors of women, and increases their level of attraction to the man wearing the mixture - during a real-life social circumstance lasting 15 minutes.

James Kohl was not paid for his endorsement. Nevertheless, he is an affiliate of LuvEssentials.com which means it is possible for him to receive a monetary gain from the sale of LuvEssentials products based on how the visitor arrived at our site.

For testimonials of LuvEssentials products, please visit our testimonials page here or our ebay reviews page here.

To contact us, please click here

Contact Us

Please complete the following form to contact us; we will reply within one business day.
Business days are Monday through Friday, 9:00 AM to 5:00 PM, EST
The information you are providing here will not be sold or disclosed to any outside party.
(* indicates required fields)

Please contact us by:

Phone:
800.611.3578

Email:
support@luvessentials.com

Mail:
Lodix Corporation
138 Palm Coast Parkway N.E.
Suite 192
Palm Coast, FL 32137


What is the vomeronasal organ (VNO)?

The vomeronasal organ (VNO) is a cone-shaped organ in the nasal cavity, which is believed to be one of the body's receptors of pheromones. More, specifically, the VNO, which is part of the accessory olfactory system in the nose, does not respond to normal scents, but may detect odorless, barely perceptible pheromones.

Other schools of thought believe that it is not the VNO but rather cells in our main olfactory system and their affects on hormones secreted by the hypothalamus that are responsible for the affects of pheromones.

Learn more about the science behind pheromones here.

What are optimized pheromones?

Optimized pheromones are lab-certified pheromone formulations that have the optimum concentration of biologically active pheromones scientifically proven to produce behavior-altering results -- particularly as sexual attractants. Optimized pheromone formulations do not necessarily contain the maximum level of pheromones available on the market, but rather contain the greatest degree (and combination)of human pheromones that trigger a conditioned biological response in humans that, in turn, dictate their sexual behavior. Optimized pheromones also release neurotransmitters that directly modify the behavior of the opposite sex, such as triggering sexual excitement. For example:

Optimized pheromones for men are scientifically proven to bring about an increase in the luteinizing hormone (LH) in women, thereby causing a woman to have a heightened sexual responsiveness to a man. This LH surge elevates a woman's predisposition towards sexual activity.

Optimized pheromones for women are scientifically proven to bring about a biochemical surge in men, thereby causing a man to have a heightened sexual responsiveness to a woman. This biochemical surge is what makes a man fiercely determined to copulate.